

Automated System for Cognitive Presence Coding

Presentation of the outcomes

Vitomir Kovanović, <u>Srećko Joksimović</u>, and Dragan Gašević THE UNIVERSITY of EDINBURGH

s.joksimovic@ed.ac.uk

@s_joksimovic

The Main Idea

Learning Analytics for Supporting Traditional DE/OL & MOOCs

Overall Goal and Study Approach

- Drive pedagogical interventions
 Build models/frameworks of MOOC learning
 Empowering instructors and learners

- Approach:
 Build Learning Analytics research on existing knowledge and models of Distance/Online education
 Use Learning Analytics to validate and extend existing educational theories

 - Automate as much as possible

Community of Inquiry

- 1. Triggering event:

 Problem identification,

 sense of

 puzzlement
- 1. Exploration:
 Brainstorming, Idea
 exploration, divergence
- 2. Integration:
 Synthesis of relevant information
- 1. Resolution:
 Problem resolution,
 testing application

Proposal: Automated Col Content Analysis

Build a system for automated coding of discussion messages for the levels of cognitive presence

Advantages:

- Enable for broader adoption of Col model
- Faster and cheaper adoption in research
- Provide detailed operationalization of CoI coding scheme
- Real-time feedback of learning in discussions
- Enable for development of various analytics dashboards

Future work:

Eventually support other presences/models

Proposed tasks and current implementation

Task	lmpl.	Note
Implementation of lag features		
Implementation of Coh-Metrix & LIWC features		
Implementation of Conditional Random Field classifier		Random Forest in the final version
Coding MOOC data		Extended the initial task
Evaluation on MOOC data		Extended the initial task
Dissemination of results & reporting		Papers: 2 published, 1 in preparation

In progress

Data

Course offerings statistics

	<u> </u>	
Course offer	# Students	# Msg
Winter 2008	15	212
Fall 2008	22	633
Summer 2009	10	243
Fall 2009	7	63
Winter 2010	14	359
Winter 2011	13	237
Average (SD)	13.5 (5.1)	291.2 (192.4)
Total	81	1,747

Distribution of cognitive presence phases

Phase	# Msg	%
Other	140	8.0%
Triggering	308	17.6%
Exploration	684	39.2%
Integration	508	29.1%
Resolution	107	6.1%
Average (SD)	349.4 (245.7)	20% (10%)
Total	1,747	100%

Feature extraction

Data pre-processing

SMOTE - **S**ynthetic **M**inority **O**ver-sampling **Te**chnique

Model selection and results

Study	Classifier	Accuracy	Cohen's Kappa
Kovanović et al. (2014)	Support Vector Machines	53.38%	0.41
Waters et al. (2015)	Conditional Random Fields	64.20%	0.48
Kovanović et al. (2016)	Random Forest	70.30%	0.63

Variable importance

Variable	Other	Triggering	Exploration	Integration	Resolution
Number of words	55.41 (61.06)	80.91 (41.56)	117.71 (67.23)	183.30 (102.94)	280.68 (189.62)
Number of named entities	13.44 (15.36)	21.67 (10.55)	28.84 (16.93)	44.75 (24.85)	64.18 (32.54)
Lexical diversity, all words	0.85 (0.12)	0.77 (0.09)	0.71 (0.10)	0.65 (0.09)	0.58 (0.09)
Position within discussion	2.39 (1.13)	1.00 (0.90)	1.84 (0.97)	1.87 (0.94)	2.00 (0.68)
Lexical diversity, content words	0.95 (0.06)	0.90 (0.06)	0.86 (0.08)	0.82 (0.07)	0.78 (0.07)
Avg. givenness of each sentence	0.10 (0.07)	0.14 (0.06)	0.18 (0.07)	0.21 (0.06)	0.24 (0.06)
Number of question marks	0.27 (0.85)	1.84 (1.63)	0.92 (1.26)	0.58 (0.82)	0.38 (0.55)
Similarity with previous message	0.20 (0.17)	0.06 (0.13)	0.22 (0.21)	0.30 (0.24)	0.39 (0.19)
Lexical diversity, VOCD	12.92 (33.93)	28.99 (50.61)	53.57 (54.68)	83.47 (43.00)	97.16 (28.95)
Avg. number of paragraphs sent.	4.26 (2.98)	6.37 (2.76)	7.49 (4.11)	10.17 (5.64)	14.05 (8.88)

Project Insights

- Classification performance
 - Substantial level of agreement
- Feature Modeling
 - surface features (e.g., unigrams, bigrams, POS-bigrams)
 - contextual features
 - domain-independent features
- "Class Balancing"
 - Synthetic Minority Over-sampling Technique

Future Work

- Classification improvement
 - "Quoting" problem
 - Class balancing different approaches
 - Extending feature set
- MOOC data work in progress
- Learning Analytics platform
 - Integrate classification module
 - Provide associated probabilities

Team

Vitomir Kovanović

- 1. Third year PhD student (School of Informatics, UoE)
- 2. Msc Software Engineering
- 3. Four years industry experience as software developer
- 4. Best paper award at LAK 2015

Srećko Joksimović

- 1. Third year PhD student (School of Education, UoE)
- 2. Msc Information systems
- 3. Six years industry experience as software developer

Dragan Gašević (supervisor)

- 1. Professor at the University of Edinburgh (Informatics & Education)
- 2. President of SOLAR Society for Learning Analytics research
- 3. PhD Information Systems

References

Garrison, D. R., Anderson, T., & Archer, W. (1999). Critical Inquiry in a Text-Based Environment: Computer Conferencing in Higher Education. *The Internet and Higher Education*, 2(2–3), 87–105.

Kovanović, V., Joksimović, S., Gašević, D., & Hatala, M. (2014). Automated Content Analysis of Online Discussion Transcripts. In *Proceedings of the Workshops at the LAK 2014 Conference*. Indianapolis, IN. Retrieved from http://ceur-ws.org/Vol-1137/

Z. Waters, V. Kovanovic, K. Kitto, and D. Gaševic. Structure matters: Adoption of structured classification approach in the context of cognitive presence classification. In *Proceedings of the 11th Asia Information Retrieval Societies Conference, AIRS 2015*, 2015.

Kovanović, V., Joksimović, S., Waters, Z., Gašević, D., Kitto, K., Hatala, M., & Siemens, G. (2016). Towards Automated Content Analysis of Discussion Transcripts: A Cognitive Presence Case. In Proceedings of the Sixth International Conference on Learning Analytics And Knowledge, LAK 16 (accepted).

The 6th International

Learning Analytics & Knowledge Conference

University of Edinburgh, Edinburgh, UK, April 25-29, 2016

Automated System for Cognitive Presence Coding

Q&A

Vitomir Kovanović, <u>Srećko Joksimović</u>, and Dragan Gašević THE UNIVERSITY of EDINBURGH

s.joksimovic@ed.ac.uk

@s_joksimovic

